Stress Approximation Technique for Helical Compression Springs Subjected to Lateral Loading
نویسندگان
چکیده
Scott G. Keller University of Central Florida Orlando, Florida, USA Ali P. Gordon University of Central Florida Orlando, Florida, USA ABSTRACT Helical compression springs are commonly used devices capable of storing kinetic energy. Typical applications vary in simplicity, ranging from low stress amplitudes and in favorable environments, e.g. ball point pen spring at room temperature, to millions of cycles in elevated temperatures, e.g. valve train spring in IC engines. Regardless of the load or environment, springs are able to use the intrinsic elasticity of the material and the initial geometry to resist plastic deformation, all while allowing for the transfer of load over various distances. Generally, these loads are parallel to the axis of the spring; however, as more complex designs arise, these uniaxial springs are gaining popularity in a variety of off-axis loading situations, e.g. flexible shaft couplings, invalidating traditional stress/strain equations. As such, equivalent stress and strain equations have been developed capable of fast, real-time calculations based upon visual inspection of the bent helix. Coupled with the initial dimensions and material of the spring, the state of equivalent stress/strain can be resolved at any position within the wire. Experiments were conducted on several off-the-shelf steel springs (conforming to ASTM A229), then compared to FEA and analytical solutions. Ultimately, it was observed that through an approximation of the bent helix, the equivalent stress and strain can be determined at any location within the wire, allowing for the approximation of life and crack initiation locations of the spring.
منابع مشابه
A Simple Approach to Static Analysis of Tall Buildings with a Combined Tube-in-tube and Outrigger-belt Truss System Subjected to Lateral Loading
In this paper, an efficient technique is presented for static analysis of tall buildings with combined tube-in-tube and outrigger-belt truss system while considering shear lag effects. In the process of replacing the discrete structure with an elastically equivalent continuous one, the structure is modeled as two parallel cantilevered flexural-shear beams that are constrained at the outrigger-b...
متن کاملA Computational Approach for Evaluating Helical Compression Springs
Helical compression springs are generally synthesized and evaluated by determining the maximum torsional stress, fatigue life, natural frequency, and/or load loss due to stress relaxation. To this end, researchers have developed finite element analysis (FEA) modeling methods to simulate the design performance of helical compression springs. The intent of this paper was to make a useful contribu...
متن کاملDamage Accumulation in Unreinforced Masonry Due to Seismic Loading
Masonry has low cohesive strength and is susceptible to the brittle failure, when subjected to induced tensile stresses. It fails due to lateral tensile stresses even when masonry prisms are tested in uni-axial static compression and the stress-strain curve remains almost linear up to failure. Although masonry normally resists compressive forces, under lateral in-plane cyclic loads some parts o...
متن کاملCumulative Fatigue Damage Under stepwise Tension-Compression Loading
Rock structures are subjected to cyclic tension-compression loading due to a blasting, earthquake, traffic and injection-production in underground storage case. Therefore study the fatigue behavior of rock samples under this type of loading is required. In this study, the accumulated fatigue damage for a Green Onyx rock sample which consisted of only one mineral composition with two-step high-l...
متن کاملMechanical properties of CNT reinforced nano-cellular polymeric nanocomposite foams
Mechanics of CNT-reinforced nano-cellular PMMA nanocomposites are investigated using coarse-grained molecular dynamics simulations. Firstly, static uniaxial stretching of bulk PMMA polymer is simulated and the results are compared with literature. Then, nano-cellular foams with different relative densities are constructed and subjected to static uniaxial stretching and obtained stress-strain cu...
متن کامل